Penyelesaian Program Linear dengan Metode Simpleks
Penyelesaian
Program Linear dengan Metode Simpleks
Contoh
soal :
Selesaikan
tabel simpleks berikut hingga mencapai nilai optimal
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
|
S1
|
0
|
3
|
2
|
1
|
0
|
0
|
18
|
S2
|
0
|
2
|
4
|
0
|
1
|
0
|
20
|
S3
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
Zj
(Cj-Zj)
|
|
|
|
|
|
|
Penyelesaian
:
Cj
|
80
|
100
|
0
|
0
|
0
|
|
||
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
Ratio
18 : 2
= 9
20 : 4
= 5
4 : 1 =
4
|
|
S1
|
0
|
3
|
2
|
1
|
0
|
0
|
18
|
|
S2
|
0
|
2
|
4
|
0
|
1
|
0
|
20
|
|
S3
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
|
Zj
(Cj-Zj)
|
0
80
|
0
100
|
0
0
|
0
0
|
0
0
|
0
|
Cj
|
80
|
100
|
0
|
0
|
0
|
|
||
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
Ratio
10 : 3
= 3,33
12 : 2
= 6
4 : 0 = tidak terhingga
|
|
S1
|
0
|
3
|
0
|
1
|
0
|
0
|
10
|
|
S2
|
0
|
2
|
2
|
0
|
1
|
0
|
12
|
|
S3
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
|
Zj
(Cj-Zj)
|
0
80
|
100
0
|
0
0
|
0
0
|
0
0
|
400
|
Untuk S1 :
|
Untuk S2 :
|
Untuk X2 :
|
||||||||||||||||||||||||||||||||||||||||||||||||||
(1,1) = 3 -
2.0 = 3
|
(2,1) = 2 -
2.0 = 2
|
(3,1) = 0 : 1 = 0
|
||||||||||||||||||||||||||||||||||||||||||||||||||
(1,2) = 2 -
2.1 = 0
|
(2,2) = 4 -
2.1 = 2
|
(3,2) = 1 : 1 = 1
|
||||||||||||||||||||||||||||||||||||||||||||||||||
(1,3) = 1 -
2.0 = 1
|
(2,3) = 0 -
2.0 = 0
|
(3,3) = 0 : 1 = 0
|
||||||||||||||||||||||||||||||||||||||||||||||||||
(1,4) = 0 -
2.0 = 0
|
(2,4) = 1 -
2.0 = 1
|
(3,4) = 0 : 1 = 0
|
||||||||||||||||||||||||||||||||||||||||||||||||||
(1,5) = 0 -
2.0 = 0
|
(2,5) = 0 -
2.0 = 0
|
(3,5) = 0 : 1 = 0
|
||||||||||||||||||||||||||||||||||||||||||||||||||
(1,6) = 18 -
2.4 = 10
|
(2,6) = 20 -
2.4 = 12
|
(3,6) = 4 : 1 = 4
|
||||||||||||||||||||||||||||||||||||||||||||||||||
|
Untuk X1 :
|
Untuk S2 :
|
Untuk X2 :
|
(1,1) = 3 : 3 = 1
|
(2,1) = 2 -
0.1 = 2
|
(3,1) = 0 -
0.1 = 0
|
(1,2) = 0 : 3 = 0
|
(2,2) = 2 -
0.2 = 2
|
(3,2) = 1 -
0.0 = 1
|
(1,3) = 1 : 3 = 0,33
|
(2,3) = 0 -
0.0,33 = 0
|
(3,3) = 0 -
0.0,33 = 0
|
(1,4) = 0 : 3 = 0
|
(2,4) = 1 -
0.0 = 1
|
(3,4) = 0 -
0.0 = 0
|
(1,5) = 0 : 3 = 0
|
(2,5) = 0 -
0.0 = 0
|
(3,5) = 0 -
0.0 = 0
|
(1,6) = 10 : 3 = 3,33
|
(2,6)
= 12 - 0.3,33 = 12
|
(3,6) = 4 -
0.3,33 = 0
|
Sudah
dapat disebut optimal karena (Cj-Zj) pada X1 dan
X2 bernilai 0. Nilai optimal yang didapat adalah 666,7.
|
||
|
Komentar
Posting Komentar